Bone-marrow mononuclear cells reduce neurodegeneration in hippocampal CA1 layer after transient global ischemia in rats
نویسندگان
چکیده
Global cerebral ischemia (GCI) results in death of the pyramidal neurons in the CA1 layer of the hippocampus. In this study we used the four-vessel occlusion (4VO) model of GCI to investigate a potential neuroprotective role of bone-marrow mononuclear cells (BMMCs) transplantation. BMMCs (3×10(7)) were injected through the carotid artery, 1 or 3 days after ischemia (DAI), and the number of cells undergoing degeneration was investigated in brains at 7 DAI. A significant decrease in the number of dying cells was observed in the treated group, compared to animals treated with saline. Biodistribution of the injected cells (1 or 3 DAI) was investigated by (99m)Technetium labeling of the BMMCs and subsequent image analysis 2h after transplantation. In addition, the presence of CellTrace(™)-labeled BMMCs was investigated in tissue sections of the hippocampal area of these transplanted animals. BMMCs treatment significantly reduced the number of FJ-C positive cells in the hippocampal CA1 layer at 7 DAI. We also observed a decrease in the number of activated microglia/macrophage (ED1-positive cells) in the BMMCs-treated group compared with the untreated group. Our data show that BMMCs are able to modulate the microglial response and reduce neurodegeneration in the CA1 layer.
منابع مشابه
Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat
Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...
متن کاملEffect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats
Objective(s):Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment ...
متن کاملEffect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat
Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...
متن کاملSystemic Administration of Mesenchymal Stem Cells Increases Neuron Survival after Global Cerebral Ischemia In Vivo (2VO)
Although many studies have shown that administration of stem cells after focal cerebral ischemia improves brain damage, very little data are available concerning the damage induced by global cerebral ischemia. The latter causes neuronal death in selectively vulnerable areas, including the hippocampal CA1 region. We tested the hypothesis that intravenous infusion of bone marrowderived stromal ce...
متن کاملبررسی میزان آپوپتوز در سلولهای هیپوکامپ به دنبال تزریق داخل وریدی سلولهای بنیادی مزانشیمی مغز استخوان در مدل ایسکمی- ریپرفیوژن موش صحرایی
Background & Aims: Cerebral ischemia is known as a major worldwide problem and subsequent reperfusion leads to apoptosis or programmed cell death. Specific regions of the brain and specific types of neurons, including hippocampal CA1 pyramidal neurons are more sensitive in cerebral ischemia. Today cell therapy is one of the common treatments that spread among the researchers. In this study, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain Research
دوره 1522 شماره
صفحات -
تاریخ انتشار 2013